Zhang Y. Y.; Zhang T. Y.; Huang Z. D.; Yang J. A new class of electronic devices based on flexible porous substrates. Adv. Sci., 2022, 9(7), e2105084. doi:10.1002/advs.202105084http://dx.doi.org/10.1002/advs.202105084
Park S.; Heo S. W.; Lee W.; Inoue D.; Jiang Z.; Yu K.; Jinno H.; Hashizume D.; Sekino M.; Yokota T.; Fukuda K.; Tajima K.; Someya T. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561(7724), 516-521. doi:10.1038/s41586-018-0536-xhttp://dx.doi.org/10.1038/s41586-018-0536-x
盛兴, 赵汶鑫, 李丽珠, 黄云翔, 丁贺. 脑机接口技术的基础研究: 神经元与二极管. 中国激光, 2023, 50(9), 181-192. doi:10.3788/CJL221562http://dx.doi.org/10.3788/CJL221562
Dai Y. H.; Hu H. W.; Wang M.; Xu J.; Wang S. H. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron., 2021, 4, 17-29. doi:10.1038/s41928-020-00513-5http://dx.doi.org/10.1038/s41928-020-00513-5
Chen R.; Canales A.; Anikeeva P. Neural recording and modulation technologies. Nat. Rev. Mater., 2017, 2(2), 16093. doi:10.1038/natrevmats.2016.93http://dx.doi.org/10.1038/natrevmats.2016.93
Park J. S.; Kim G. U.; Lee S.; Lee J. W.; Li S.; Lee J. Y.; Kim B. J. Material design and device fabrication strategies for stretchable organic solar cells. Adv. Mater., 2022, 34(31), 2201623. doi:10.1002/adma.202270230http://dx.doi.org/10.1002/adma.202270230
Zheng X. J.; Zuo L. J.; Yan K. R.; Shan S. Q.; Chen T. Y.; Ding G. Y.; Xu B. W.; Yang X.; Hou J. H.; Shi M. M.; Chen H. Z. Versatile organic photovoltaics with a power density of nearly 40 W·g-1. Energy Environ. Sci., 2023, 16(5), 2284-2294. doi:10.1039/d3ee00087ghttp://dx.doi.org/10.1039/d3ee00087g
Qin F.; Wang W.; Sun L. L.; Jiang X. S.; Hu L.; Xiong S. X.; Liu T. F.; Dong X. Y.; Li J.; Jiang Y. Y.; Hou J. H.; Fukuda K.; Someya T.; Zhou Y. H. Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat. Commun., 2020, 11(1), 4508. doi:10.1038/s41467-020-18373-0http://dx.doi.org/10.1038/s41467-020-18373-0
Sun Y. N.; Chang M. J.; Meng L. X.; Wan X. J.; Gao H. H.; Zhang Y. M.; Zhao K.; Sun Z. H.; Li C. X.; Liu S. R.; Wang H. K.; Liang J. J.; Chen Y. S. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron., 2019, 2, 513-520. doi:10.1038/s41928-019-0315-1http://dx.doi.org/10.1038/s41928-019-0315-1
Zeng G.; Chen W. J.; Chen X. B.; Hu Y.; Chen Y.; Zhang B.; Chen H. Y.; Sun W. W.; Shen Y. X.; Li Y. W.; Yan F.; Li Y. F. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19), 8658-8668. doi:10.1021/jacs.2c01503http://dx.doi.org/10.1021/jacs.2c01503
Chen Z. Y.; Zhu J. T.; Yang D. B.; Song W.; Shi J. Y.; Ge J. F.; Guo Y. T.; Tong X. Y.; Chen F.; Ge Z. Y. Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy Environ. Sci., 2023, 16(7), 3119-3127. doi:10.1039/d3ee01164jhttp://dx.doi.org/10.1039/d3ee01164j
Li S. M.; Gao M. Y.; Zhou K. K.; Li X.; Xian K. H.; Zhao W. C.; Chen Y.; He C. Y.; Ye L. Achieving record-high stretchability and mechanical stability in organic photovoltaic blends with a dilute-absorber strategy. Adv. Mater., 2024, 36(8), e2307278. doi:10.1002/adma.202307278http://dx.doi.org/10.1002/adma.202307278
Lee S.; Jeon Y.; Lee S. Y.; Ma B. S.; Song M.; Jeong D.; Jo J.; Kim G. U.; Lee J.; Kim T. S.; Kim B. J.; Lee J. Y. Intrinsically stretchable organic solar cells without cracks under 40% strain. Adv. Energy Mater., 2023, 13(30), 2300533. doi:10.1002/aenm.202300533http://dx.doi.org/10.1002/aenm.202300533
Wan Q. P.; Seo S.; Lee S. W.; Lee J.; Jeon H.; Kim T. S.; Kim B. J.; Thompson B. C. High-performance intrinsically stretchable polymer solar cell with record efficiency and stretchability enabled by thymine-functionalized terpolymer. J. Am. Chem. Soc., 2023, 145(22), 11914-11920. doi:10.1021/jacs.3c02764http://dx.doi.org/10.1021/jacs.3c02764
Zheng X. J.; Wu X. L.; Wu Q.; Han Y. F.; Ding G. Y.; Wang Y. M.; Kong Y. B.; Chen T. Y.; Wang M. T.; Zhang Y. Q.; Xue J. W.; Fu W. F.; Luo Q.; Ma C. Q.; Ma W.; Zuo L. J.; Shi M. M.; Chen H. Z. Thorough optimization for intrinsically stretchable organic photovoltaics. Adv. Mater., 2024, 36(11), 2307280. doi:10.1002/adma.202307280http://dx.doi.org/10.1002/adma.202307280
Kazem N.; Hellebrekers T.; Majidi C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater., 2017, 29(27), 1605985. doi:10.1002/adma.201605985http://dx.doi.org/10.1002/adma.201605985
Lipomi D. J.; Tee B. C. K.; Vosgueritchian M.; Bao Z. N. Stretchable organic solar cells. Adv. Mater., 2011, 23(15), 1771-1775. doi:10.1002/adma.201004426http://dx.doi.org/10.1002/adma.201004426
Ouyang J. Y. Application of intrinsically conducting polymers in flexible electronics. SmartMat, 2021, 2(3), 263-285. doi:10.1002/smm2.1059http://dx.doi.org/10.1002/smm2.1059
Yang Y.; Hu H. J.; Chen Z. Y.; Wang Z. Y.; Jiang L. M.; Lu G. X.; Li X. J.; Chen R. M.; Jin J.; Kang H. C.; Chen H. X.; Lin S.; Xiao S. Q.; Zhao H. Y.; Xiong R.; Shi J.; Zhou Q. F.; Xu S.; Chen Y. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett., 2020, 20(6), 4445-4453. doi:10.1021/acs.nanolett.0c01225http://dx.doi.org/10.1021/acs.nanolett.0c01225
Hao Y. N.; He X. Y.; Wang L. M.; Qin X. H.; Chen G. M.; Yu J. Y. Stretchable thermoelectrics: strategies, performances, and applications. Adv. Funct. Mater., 2022, 32(13), 2109790. doi:10.1002/adfm.202109790http://dx.doi.org/10.1002/adfm.202109790
Kim N.; Lienemann S.; Petsagkourakis I.; Alemu Mengistie D.; Kee S.; Ederth T.; Gueskine V.; Leclère P.; Lazzaroni R.; Crispin X.; Tybrandt K. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun., 2020, 11, 1424. doi:10.1038/s41467-020-15135-whttp://dx.doi.org/10.1038/s41467-020-15135-w
Yao H. Y.; Fan Z.; Cheng H. L.; Guan X.; Wang C.; Sun K.; Ouyang J. Y. Recent development of thermoelectric polymers and composites. Macromol. Rapid Commun., 2018, 39(6), e1700727. doi:10.1002/marc.201700727http://dx.doi.org/10.1002/marc.201700727
Deng S. H.; Kuang Y. Z.; Liu L. Y.; Liu X. Y.; Liu J.; Li J. Y.; Meng B.; Di C. A.; Hu J. L.; Liu J. High-performance and ecofriendly organic thermoelectrics enabled by N-type polythiophene derivatives with doping-induced molecular order. Adv. Mater., 2024, 36(8), e2309679. doi:10.1002/adma.202309679http://dx.doi.org/10.1002/adma.202309679
Zhang X.; Ding J. M.; Wang D. Y.; Dai X. J.; Ma Y. Q.; Zhao Y.; Guan B.; Liu L. Y.; Zou Y.; Zhang F. J.; Di C. A. Waterborne paints based on polymeric semiconductor for attachable thermoelectric generators. Small Struct., 2023, 4(2), 2200278. doi:10.1002/sstr.202200278http://dx.doi.org/10.1002/sstr.202200278
Mackanic D. G.; Yan X. Z.; Zhang Q. H.; Matsuhisa N.; Yu Z. A.; Jiang Y. W.; Manika T.; Lopez J.; Yan H. P.; Liu K.; Chen X. D.; Cui Y.; Bao Z. N. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun., 2019, 10(1), 5384. doi:10.1038/s41467-019-13362-4http://dx.doi.org/10.1038/s41467-019-13362-4
Wang Z. L. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today, 2017, 20(2), 74-82. doi:10.1016/j.mattod.2016.12.001http://dx.doi.org/10.1016/j.mattod.2016.12.001
Dong K.; Peng X.; Wang Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater., 2020, 32(5), e1902549. doi:10.1002/adma.201902549http://dx.doi.org/10.1002/adma.201902549
Wang Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11), 9533-9557. doi:10.1021/nn404614zhttp://dx.doi.org/10.1021/nn404614z
Wang Z. L.; Song J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771), 242-246. doi:10.1126/science.1124005http://dx.doi.org/10.1126/science.1124005
Fan F. R.; Tian Z. Q.; Wang Z. L. Flexible triboelectric generator. Nano Energy, 2012, 1(2), 328-334. doi:10.1016/j.nanoen.2012.01.004http://dx.doi.org/10.1016/j.nanoen.2012.01.004
Lai Y. C.; Deng J. N.; Niu S. M.; Peng W. B.; Wu C. S.; Liu R. Y.; Wen Z.; Wang Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater., 2016, 28(45), 10024-10032. doi:10.1002/adma.201603527http://dx.doi.org/10.1002/adma.201603527
Huang Y.; Zhong M.; Shi F. K.; Liu X. Y.; Tang Z. J.; Wang Y. K.; Huang Y.; Hou H. Q.; Xie X. M.; Zhi C. Y. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed., 2017, 56(31), 9141-9145. doi:10.1002/anie.201705212http://dx.doi.org/10.1002/anie.201705212
Zhao Y.; Chen S.; Hu J.; Yu J. L.; Feng G. C.; Yang B.; Li C. H.; Zhao N.; Zhu C. Z.; Xu J. Microgel-enhanced double network hydrogel electrode with high conductivity and stability for intrinsically stretchable and flexible all-gel-state supercapacitor. ACS Appl. Mater. Interfaces, 2018, 10(23), 19323-19330. doi:10.1021/acsami.8b05224http://dx.doi.org/10.1021/acsami.8b05224
Wang X.; Yang C. Y.; Jin J.; Li X. W.; Cheng Q. L.; Wang G. C. High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. J. Mater. Chem. A, 2018, 6(10), 4432-4442. doi:10.1039/c7ta11173hhttp://dx.doi.org/10.1039/c7ta11173h
Chen C. R.; Qin H. L.; Cong H. P.; Yu S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater., 2019, 31(19), e1900573. doi:10.1002/adma.201900573http://dx.doi.org/10.1002/adma.201900573
Chen F.; Li Y. M.; Chen Y.; Wang Y. X.; Hu W. P. Supramolecular interface decoration on a polymer conductor for an intrinsically stretchable near-infrared photodiode. Chem. Commun., 2023, 59(80), 11975-11978. doi:10.1039/d3cc04189ahttp://dx.doi.org/10.1039/d3cc04189a
Kang H.; Lee Y.; Lee G. H.; Chung J. W.; Kwon Y. N.; Kim J. Y.; Kuzumoto Y.; Gam S.; Kang S. G.; Jung J. Y.; Choi A.; Yun Y. Strain-tolerant, high-detectivity, and intrinsically stretchable all-polymer photodiodes. Adv. Funct. Mater., 2023, 33(13), 2212219. doi:10.1002/adfm.202212219http://dx.doi.org/10.1002/adfm.202212219
Park Y.; Fuentes-Hernandez C.; Kim K.; Chou W. F.; Larrain F. A.; Graham S.; Pierron O. N.; Kippelen B. Skin-like low-noise elastomeric organic photodiodes. Sci. Adv., 2021, 7(51), eabj6565. doi:10.1126/sciadv.abj6565http://dx.doi.org/10.1126/sciadv.abj6565
Li J. X.; Liu Y. X.; Yuan L.; Zhang B. B.; Bishop E. S.; Wang K. C.; Tang J.; Zheng Y. Q.; Xu W. H.; Niu S. M.; Beker L.; Li T. L.; Chen G.; Diyaolu M.; Thomas A. L.; Mottini V.; Tok J. B. H.; Dunn J. C. Y.; Cui B. X.; Pașca S. P.; Cui Y.; Habtezion A.; Chen X. K.; Bao Z. N. A tissue-like neurotransmitter sensor for the brain and gut. Nature, 2022, 606(7912), 94-101. doi:10.1038/s41586-022-04615-2http://dx.doi.org/10.1038/s41586-022-04615-2
Zhao G. D.; Sun J.; Zhang M. X.; Guo S. L.; Wang X.; Li J. T.; Tong Y. H.; Zhao X. L.; Tang Q. X.; Liu Y. C. Highly strain-stable intrinsically stretchable olfactory sensors for imperceptible health monitoring. Adv. Sci., 2023, 10(29), e2302974. doi:10.1002/advs.202302974http://dx.doi.org/10.1002/advs.202302974
Zhang F. J.; Zang Y. P.; Huang D. Z.; Di C. A.; Zhu D. B. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun., 2015, 6, 8356. doi:10.1038/ncomms9356http://dx.doi.org/10.1038/ncomms9356
Zhu C. X.; Chortos A.; Wang Y.; Pfattner R.; Lei T.; Hinckley A. C.; Pochorovski I.; Yan X. Z.; To J. W. F.; Oh J. Y.; Tok J. B. H.; Bao Z. N.; Murmann B. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron., 2018, 1, 183-190. doi:10.1038/s41928-018-0041-0http://dx.doi.org/10.1038/s41928-018-0041-0
Yan C. Y.; Wang J. X.; Lee P. S. Stretchable graphene thermistor with tunable thermal index. ACS Nano, 2015, 9(2), 2130-2137. doi:10.1021/nn507441chttp://dx.doi.org/10.1021/nn507441c
Trung T. Q.; Ramasundaram S.; Hwang B. U.; Lee N. E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater., 2016, 28(3), 502-509. doi:10.1002/adma.201504441http://dx.doi.org/10.1002/adma.201504441
Du X. J.; Yang L. Y.; Liu N. Recent progress on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioelectrodes. Small Sci., 2023, 3(7), 2300008. doi:10.1002/smsc.202300008http://dx.doi.org/10.1002/smsc.202300008
Yang S. J.; Cheng J. H.; Shang J.; Hang C.; Qi J.; Zhong L. N.; Rao Q. Y.; He L.; Liu C. Q.; Ding L.; Zhang M. M.; Chakrabarty S.; Jiang X. Y. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat. Commun., 2023, 14(1), 6494. doi:10.1038/s41467-023-42149-xhttp://dx.doi.org/10.1038/s41467-023-42149-x
Kabiri Ameri S.; Ho R.; Jang H.; Tao L.; Wang Y. H.; Wang L.; Schnyer D. M.; Akinwande D.; Lu N. S. Graphene electronic tattoo sensors. ACS Nano, 2017, 11(8), 7634-7641. doi:10.1021/acsnano.7b02182http://dx.doi.org/10.1021/acsnano.7b02182
Wang Y.; Zhu C. X.; Pfattner R.; Yan H. P.; Jin L. H.; Chen S. C.; Molina-Lopez F.; Lissel F.; Liu J.; Rabiah N. I.; Chen Z.; Chung J. W.; Linder C.; Toney M. F.; Murmann B.; Bao Z. N. A highly stretchable, transparent, and conductive polymer. Sci. Adv., 2017, 3(3), e1602076. doi:10.1126/sciadv.1602076http://dx.doi.org/10.1126/sciadv.1602076
Gao D. C.; Parida K.; Lee P. S. Emerging soft conductors for bioelectronic interfaces. Adv. Funct. Mater., 2020, 30(29), 1907184. doi:10.1002/adfm.201907184http://dx.doi.org/10.1002/adfm.201907184
Cea C.; Spyropoulos G. D.; Jastrzebska-Perfect P.; Ferrero J. J.; Gelinas J. N.; Khodagholy D. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater., 2020, 19(6), 679-686. doi:10.1038/s41563-020-0638-3http://dx.doi.org/10.1038/s41563-020-0638-3
Guo L.; Ma M. M.; Zhang N.; Langer R.; Anderson D. G. Stretchable polymeric multielectrode array for conformal neural interfacing. Adv. Mater., 2014, 26(9), 1427-1433. doi:10.1002/adma.201304140http://dx.doi.org/10.1002/adma.201304140
Shi H.; Liu C. C.; Jiang Q. L.; Xu J. K. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron. Mater., 2015, 1(4), 1500017. doi:10.1002/aelm.201500017http://dx.doi.org/10.1002/aelm.201500017
Fan X.; Nie W. Y.; Tsai H.; Wang N. X.; Huang H. H.; Cheng Y. J.; Wen R. J.; Ma L. J.; Yan F.; Xia Y. G. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci., 2019, 6(19), 1900813. doi:10.1002/advs.201900813http://dx.doi.org/10.1002/advs.201900813
Wen Y. P.; Xu J. K. Scientific importance of water-processable PEDOT-PSS and preparation, challenge and new application in sensors of its film electrode: a review. J. Polym. Sci. Part A Polym. Chem., 2017, 55(7), 1121-1150. doi:10.1002/pola.28482http://dx.doi.org/10.1002/pola.28482
Jiang Y. W.; Zhang Z. T.; Wang Y. X.; Li D. L.; Coen C. T.; Hwaun E.; Chen G.; Wu H. C.; Zhong D. L.; Niu S. M.; Wang W. C.; Saberi A.; Lai J. C.; Wu Y. L.; Wang Y.; Trotsyuk A. A.; Loh K. Y.; Shih C. C.; Xu W. H.; Liang K.; Zhang K. L.; Bai Y. H.; Gurusankar G.; Hu W. P.; Jia W.; Cheng Z.; Dauskardt R. H.; Gurtner G. C.; Tok J. B. H.; Deisseroth K.; Soltesz I.; Bao Z. N. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375(6587), 1411-1417. doi:10.1126/science.abj7564http://dx.doi.org/10.1126/science.abj7564
Zhou W.; Jiang Y. W.; Xu Q.; Chen L. P.; Qiao H.; Wang Y. X.; Lai J. C.; Zhong D. L.; Zhang Y.; Li W. N.; Du Y. R.; Wang X. C.; Lei J. X.; Dong G. H.; Guan X. D.; Ma S. C.; Kang P.; Yuan L. H.; Zhang M. L.; Tok J. B. H.; Li D. L.; Bao Z. N.; Jia W. Soft and stretchable organic bioelectronics for continuous intraoperative neurophysiological monitoring during microsurgery. Nat. Biomed. Eng., 2023, 7(10), 1270-1281. doi:10.1038/s41551-023-01069-3http://dx.doi.org/10.1038/s41551-023-01069-3
Chen Y.; Chen L. P.; Geng B. W.; Chen F.; Yuan Y.; Li D. L.; Wang Y. X.; Jia W.; Hu W. P. Triple-network-based conductive polymer hydrogel for soft and elastic bioelectronic interfaces. SmartMat, 2023, e1229. doi:10.1002/smm2.1229http://dx.doi.org/10.1002/smm2.1229
Yuk H.; Lu B. Y.; Lin S.; Qu K.; Xu J. K.; Luo J. H.; Zhao X. H. 3D printing of conducting polymers. Nat. Commun., 2020, 11(1), 1604. doi:10.1038/s41467-020-15316-7http://dx.doi.org/10.1038/s41467-020-15316-7
Lei Y. Q.; Li P. Y.; Zheng Y. T.; Lei T. Materials design and applications of n-type and ambipolar organic electrochemical transistors. Mater. Chem. Front., 2024, 8(1), 133-158. doi:10.1039/d3qm00828bhttp://dx.doi.org/10.1039/d3qm00828b
Yang A. N.; Song J. J.; Liu H.; Zhao Z. Y.; Li L.; Yan F. Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart. Adv. Funct. Mater., 2023, 33(17), 2215037. doi:10.1002/adfm.202215037http://dx.doi.org/10.1002/adfm.202215037
Lee W.; Kobayashi S.; Nagase M.; Jimbo Y.; Saito I.; Inoue Y.; Yambe T.; Sekino M.; Malliaras G. G.; Yokota T.; Tanaka M.; Someya T. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv., 2018, 4(10), eaau2426. doi:10.1126/sciadv.aau2426http://dx.doi.org/10.1126/sciadv.aau2426
Chen J. H.; Huang W.; Zheng D.; Xie Z. Q.; Zhuang X. M.; Zhao D.; Chen Y.; Su N.; Chen H. M.; Pankow R. M.; Gao Z.; Yu J. S.; Guo X. G.; Cheng Y. H.; Strzalka J.; Yu X. G.; Marks T. J.; Facchetti A. Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat. Mater., 2022, 21(5), 564-571. doi:10.1038/s41563-022-01239-9http://dx.doi.org/10.1038/s41563-022-01239-9
Dai Y. H.; Dai S. L.; Li N.; Li Y.; Moser M.; Strzalka J.; Prominski A.; Liu Y. D.; Zhang Q. T.; Li S. S.; Hu H. W.; Liu W.; Chatterji S.; Cheng P.; Tian B. Z.; McCulloch I.; Xu J.; Wang S. H. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater., 2022, 34(23), e2201178. doi:10.1002/adma.202201178http://dx.doi.org/10.1002/adma.202201178
Liu D. Y.; Tian X. Y.; Bai J.; Wang Y.; Cheng Y. X.; Ning W. J.; Chan P. K. L.; Wu K.; Sun J. Q.; Zhang S. M. Intrinsically stretchable organic electrochemical transistors with rigid-device-benchmarkable performance. Adv. Sci., 2022, 9(29), 2203418. doi:10.1002/advs.202270189http://dx.doi.org/10.1002/advs.202270189
Liu Y. W.; Zhu M. L.; Sun J. Z.; Shi W. K.; Zhao Z. Y.; Wei X. F.; Huang X.; Guo Y. L.; Liu Y. Q. A self-assembled 3D penetrating nanonetwork for high-performance intrinsically stretchable polymer light-emitting diodes. Adv. Mater., 2022, 34(27), e2201844. doi:10.1002/adma.202201844http://dx.doi.org/10.1002/adma.202201844
Zhang Z. T.; Wang W. C.; Jiang Y. W.; Wang Y. X.; Wu Y. L.; Lai J. C.; Niu S. M.; Xu C. Y.; Shih C. C.; Wang C.; Yan H. P.; Galuska L.; Prine N.; Wu H. C.; Zhong D. L.; Chen G.; Matsuhisa N.; Zheng Y.; Yu Z. A.; Wang Y.; Dauskardt R.; Gu X. D.; Tok J. B. H.; Bao Z. N. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603(7902), 624-630. doi:10.1038/s41586-022-04400-1http://dx.doi.org/10.1038/s41586-022-04400-1
Filiatrault H. L.; Porteous G. C.; Carmichael R. S.; Davidson G. J. E.; Carmichael T. B. Stretchable light-emitting electrochemical cells using an elastomeric emissive material. Adv. Mater., 2012, 24(20), 2673-2678. doi:10.1002/adma.201200448http://dx.doi.org/10.1002/adma.201200448
Pei Q.; Yu G.; Zhang C.; Yang Y.; Heeger A. J. Polymer light-emitting electrochemical cells. Science, 1995, 269(5227), 1086-1088. doi:10.1126/science.269.5227.1086http://dx.doi.org/10.1126/science.269.5227.1086
Yu Z. B.; Li L.; Gao H. E.; Pei Q. B. Polymer light-emitting electrochemical cells: Recent developments to stabilize the p-i-n junction and explore novel device applications. Sci. China Chem., 2013, 56(8), 1075-1086. doi:10.1007/s11426-013-4882-0http://dx.doi.org/10.1007/s11426-013-4882-0
Wang J. X.; Lee P. S. Progress and prospects in stretchable electroluminescent devices. Nanophotonics, 2017, 6(2), 435-451. doi:10.1515/nanoph-2016-0002http://dx.doi.org/10.1515/nanoph-2016-0002
Gao H. E.; Chen S.; Liang J. J.; Pei Q. B. Elastomeric light emitting polymer enhanced by interpenetrating networks. ACS Appl. Mater. Interfaces, 2016, 8(47), 32504-32511. doi:10.1021/acsami.6b10447http://dx.doi.org/10.1021/acsami.6b10447
Liu J.; Wang J. C.; Zhang Z. T.; Molina-Lopez F.; Wang G.J N.; Schroeder B. C.; Yan X. Z.; Zeng Y. T.; Zhao O.; Tran H.; Lei T.; Lu Y.; Wang Y. X.; Tok J. B. H.; Dauskardt R.; Chung J. W.; Yun Y.; Bao Z. N.Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun., 2020, 11(1), 3362. doi:10.1038/s41467-020-17084-whttp://dx.doi.org/10.1038/s41467-020-17084-w
Wang Z.; Wang X. Y.; Cong S.; Geng F. X.; Zhao Z. G. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Mater. Sci. Eng. R Rep., 2020, 140, 100524. doi:10.1016/j.mser.2019.100524http://dx.doi.org/10.1016/j.mser.2019.100524
Gu C.; Jia A. B.; Zhang Y. M.; Zhang S. X. A. Emerging electrochromic materials and devices for future displays. Chem. Rev., 2022, 122(18), 14679-14721. doi:10.1021/acs.chemrev.1c01055http://dx.doi.org/10.1021/acs.chemrev.1c01055
Bai Y. H.; Li W. Z.; Tie Y.; Kou Y.; Wang Y. X.; Hu W. P. A stretchable polymer conductor through the mutual plasticization effect. Adv. Mater., 2023, 35(38), e2303245. doi:10.1002/adma.202303245http://dx.doi.org/10.1002/adma.202303245
Yin L.; Cao M. Z.; Kim K. N.; Lin M. Y.; Moon J. M.; Sempionatto J. R.; Yu J. L.; Liu R. X.; Wicker C.; Trifonov A.; Zhang F. Y.; Hu H. J.; Moreto J. R.; Go J.; Xu S.; Wang J. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron., 2022, 5, 694-705. doi:10.1038/s41928-022-00843-6http://dx.doi.org/10.1038/s41928-022-00843-6
Bian Y. S.; Liu K.; Guo Y. L.; Liu Y. Q. Research progress in functional stretchable organic electronic devices. Acta Chim. Sinica, 2020, 78(9), 848. doi:10.6023/a20050197http://dx.doi.org/10.6023/a20050197
Jao C. C.; Chang J. R.; Ya C. Y.; Chen W. C.; Cho C. J.; Lin J. H.; Chiu Y. C.; Zhou Y.; Kuo C. C. Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym. Int., 2021, 70(4), 426-431. doi:10.1002/pi.6023http://dx.doi.org/10.1002/pi.6023
Au-Duong A. N.; Wu C. C.; Li Y. T.; Huang Y. S.; Cai H. Y.; Hai I. J.; Cheng Y. H.; Hu C. C.; Lai J. Y.; Kuo C. C.; Chiu Y. C. Synthetic concept of intrinsically elastic luminescent polyfluorene-based copolymers via RAFT polymerization. Macromolecules, 2020, 53(10), 4030-4037. doi:10.1021/acs.macromol.0c00428http://dx.doi.org/10.1021/acs.macromol.0c00428
Ni M. J.; An X.; Bai L. B.; Wang K.; Cai J. L.; Wang S. J.; He L. L.; Xu M.; Liu H. Y.; Lin J. Y.; Ding X. H.; Yin C. R.; Huang W. Intrinsically stretchable and stable ultra-deep-blue fluorene-based polymer with a high emission efficiency of ≈90% for polymer light-emitting devices with a CIEy = 0.06. Adv. Funct. Mater., 2022, 32(5), 2106564. doi:10.1002/adfm.202106564http://dx.doi.org/10.1002/adfm.202106564
Liu W.; Zhang C.; Alessandri R.; Diroll B. T.; Li Y.; Liang H. Y.; Fan X. C.; Wang K.; Cho H.; Liu Y. D.; Dai Y. H.; Su Q.; Li N.; Li S. S.; Wai S.; Li Q.; Shao S. Y.; Wang L. X.; Xu J.; Zhang X. H.; Talapin D. V.; de Pablo J. J.; Wang S. H. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater., 2023, 22(6), 737-745. doi:10.1038/s41563-023-01529-whttp://dx.doi.org/10.1038/s41563-023-01529-w
Li H.; Shi W.; Song J.; Jang H. J.; Dailey J.; Yu J. S.; Katz H. E. Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev., 2019, 119(1), 3-35. doi:10.1021/acs.chemrev.8b00016http://dx.doi.org/10.1021/acs.chemrev.8b00016
Fu B. B.; Yang F. X.; Sun L. J.; Zhao Q.; Ji D. Y.; Sun Y. J.; Zhang X. T.; Hu W. P. Challenging bendable organic single crystal and transistor arrays with high mobility and durability toward flexible electronics. Adv. Mater., 2022, 34(39), e2203330. doi:10.1002/adma.202270274http://dx.doi.org/10.1002/adma.202270274
Bian Y. S.; Liu Y. Q.; Guo Y. L. Intrinsically stretchable organic optoelectronic devices and arrays: progress and perspective. Sci. Bull., 2023, 68(10), 975-980. doi:10.1016/j.scib.2023.04.035http://dx.doi.org/10.1016/j.scib.2023.04.035
Zheng Y.; Zhang S.; Tok J. B. H.; Bao Z. N. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc., 2022, 144(11), 4699-4715. doi:10.1021/jacs.2c00072http://dx.doi.org/10.1021/jacs.2c00072
Tien H. C.; Huang Y. W.; Chiu Y. C.; Cheng Y. H.; Chueh C. C.; Lee W. Y. Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. J. Mater. Chem. C, 2021, 9(8), 2660-2684. doi:10.1039/d0tc06059chttp://dx.doi.org/10.1039/d0tc06059c
Dimov I. B.; Moser M.; Malliaras G. G.; McCulloch I. Semiconducting polymers for neural applications. Chem. Rev., 2022, 122(4), 4356-4396. doi:10.1021/acs.chemrev.1c00685http://dx.doi.org/10.1021/acs.chemrev.1c00685
Mei J. G. What’s next for semiconducting polymers. J. Polym. Sci., 2022, 60(3), 287-289. doi:10.1002/pol.20220014http://dx.doi.org/10.1002/pol.20220014
Qiu Y. C.; Zhang B.; Yang J. C.; Gao H. F.; Li S.; Wang L.; Wu P. H.; Su Y. W.; Zhao Y.; Feng J. G.; Jiang L.; Wu Y. C. Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient. Nat. Commun., 2021, 12(1), 7038. doi:10.1038/s41467-021-27370-whttp://dx.doi.org/10.1038/s41467-021-27370-w
Ding Y. F.; Yuan Y.; Wu N.; Wang X. H.; Zhang G. B.; Qiu L. Z. Intrinsically stretchable n-type polymer semiconductors through side chain engineering. Macromolecules, 2021, 54(18), 8849-8859. doi:10.1021/acs.macromol.1c00936http://dx.doi.org/10.1021/acs.macromol.1c00936
Xu J.; Wang S. H.; Wang G.J N.; Zhu C. X.; Luo S. C.; Jin L. H.; Gu X. D.; Chen S. C.; Feig V. R.; To J. W. F.; Rondeau-Gagné S.; Park J.; Schroeder B. C.; Lu C. E.; Oh J. Y.; Wang Y. M.; Kim Y. H.; Yan H.; Sinclair R.; Zhou D. S.; Xue G.; Murmann B.; Linder C.; Cai W.; Tok J. B. H.; Chung J. W.; Bao Z. N.Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355(6320), 59-64. doi:10.1126/science.aah4496http://dx.doi.org/10.1126/science.aah4496
Shim H.; Sim K.; Wang B. H.; Zhang Y. C.; Patel S.; Jang S.; Marks T. J.; Facchetti A.; Yu C. J. Elastic integrated electronics based on a stretchable n-type elastomer-semiconductor-elastomer stack. Nat. Electron., 2023, 6, 349-359. doi:10.1038/s41928-023-00966-4http://dx.doi.org/10.1038/s41928-023-00966-4
Wang S. H.; Xu J.; Wang W. C.; Wang G.J N.; Rastak R.; Molina-Lopez F.; Chung J. W.; Niu S. M.; Feig V. R.; Lopez J.; Lei T.; Kwon S. K.; Kim Y.; Foudeh A. M.; Ehrlich A.; Gasperini A.; Yun Y.; Murmann B.; Tok J. B. H.; Bao Z. N.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694), 83-88. doi:10.1038/nature25494http://dx.doi.org/10.1038/nature25494
Wang W. C.; Wang S. H.; Rastak R.; Ochiai Y.; Niu S. M.; Jiang Y. W.; Arunachala P. K.; Zheng Y.; Xu J.; Matsuhisa N.; Yan X. Z.; Kwon S. K.; Miyakawa M.; Zhang Z. T.; Ning R.; Foudeh A. M.; Yun Y.; Linder C.; Tok J. B. H.; Bao Z. N. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron., 2021, 4, 143-150. doi:10.1038/s41928-020-00525-1http://dx.doi.org/10.1038/s41928-020-00525-1
Zheng Y. Q.; Liu Y. X.; Zhong D. L.; Nikzad S.; Liu S. H.; Yu Z. A.; Liu D. Y.; Wu H. C.; Zhu C. X.; Li J. X.; Tran H.; Tok J. B. H.; Bao Z. N. Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373(6550), 88-94. doi:10.1126/science.abh3551http://dx.doi.org/10.1126/science.abh3551
Wang W. C.; Jiang Y. W.; Zhong D. L.; Zhang Z. T.; Choudhury S.; Lai J. C.; Gong H. X.; Niu S. M.; Yan X. Z.; Zheng Y.; Shih C. C.; Ning R.; Lin Q.; Li D. L.; Kim Y. H.; Kim J.; Wang Y. X.; Zhao C. Z.; Xu C. Y.; Ji X. Z.; Nishio Y.; Lyu H.; Tok J. B. H.; Bao Z. N. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science, 2023, 380(6646), 735-742. doi:10.1126/science.ade0086http://dx.doi.org/10.1126/science.ade0086
Niu S. M.; Matsuhisa N.; Beker L.; Li J. X.; Wang S. H.; Wang J. C.; Jiang Y. W.; Yan X. Z.; Yun Y.; Burnett W.; Poon A. S. Y.; Tok J. B. H.; Chen X. D.; Bao Z. N. A wireless body area sensor network based on stretchable passive tags. Nat. Electron., 2019, 2, 361-368. doi:10.1038/s41928-019-0286-2http://dx.doi.org/10.1038/s41928-019-0286-2
Jiang Y. W.; Trotsyuk A. A.; Niu S. M.; Henn D.; Chen K.; Shih C. C.; Larson M. R.; Mermin-Bunnell A. M.; Mittal S.; Lai J. C.; Saberi A.; Beard E.; Jing S.; Zhong D. L.; Steele S. R.; Sun K. F.; Jain T.; Zhao E.; Neimeth C. R.; Viana W. G.; Tang J.; Sivaraj D.; Padmanabhan J.; Rodrigues M.; Perrault D. P.; Chattopadhyay A.; Maan Z. N.; Leeolou M. C.; Bonham C. A.; Kwon S. H.; Kussie H. C.; Fischer K. S.; Gurusankar G.; Liang K.; Zhang K. L.; Nag R.; Snyder M. P.; Januszyk M.; Gurtner G. C.; Bao Z. N. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol., 2023, 41(5), 652-662. doi:10.1038/s41587-022-01528-3http://dx.doi.org/10.1038/s41587-022-01528-3
Oldroyd P.; Gurke J.; Malliaras G. G. Stability of thin film neuromodulation electrodes under accelerated aging conditions. Adv. Funct. Mater., 2023, 33(1), 2208881. doi:10.1002/adfm.202208881http://dx.doi.org/10.1002/adfm.202208881
He H.; Ouyang J. Y. Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT:PSS for flexible electronics applications. Acc. Mater. Res., 2020, 1(2), 146-157. doi:10.1021/accountsmr.0c00021http://dx.doi.org/10.1021/accountsmr.0c00021